
Oreum Industries Internal Project, 2024Q3

000_Overview.ipynb

Oreum Case Studies - ONS Deaths Survival Regression
oreum_cs_ons

Demonstrate Survival Regression Modelling using Bayesian inference and a Bayesian workflow,

specifically using the pymc & arviz ecosystem.

This is very brief overview of a full case study oreum_cs_ons in which we demonstrate an E2E

workflow for survival regression models of increasing sophistication.

This overview is for verbal presentation and quick discussion purposes only, and ideally should

accompany a deeper technical walkthrough of the case study in a long-form style. There we

evaluate the behaviour and performance of the models throughout the workflows, including several

state-of-the-art methods unavailable to conventional max-likelihood / machine-learning models.

PDF version

Oreum Industries: Technical Resources

We use a complicated, real-world dataset: the ONS England & Wales Deaths 2022 reference tables:

Death registrations by single year of age, (males | females),
England and Wales, registered 1963 to 2022

This dataset requires multiple advanced modelling methods to handle and mitigate bad / messy

data, and in particular a very unusual right-truncation due to the ONS only publishing aggregated

death counts. i.e this is not an observational study of cohorts / individuals from a specified start-

time, instead we only learn about individuals when we record a death!

This has several implications on the choice of model, which we discuss in detail in Model

Architecture, to summarise:

We use a parametric distribution to estimate the event density function as a Gompertz PDF,

reparameterised using the modal-age-of-death

We regress this distribution onto features in the data

§1

π(t)

https://oreum.io/
https://github.com/oreum-industries/oreum_cs_ons
file:///var/folders/yr/x3q_mhvx0l5djfrgtr_06qcw0000gn/T/000_Overview.pdf
https://github.com/oreum-industries
https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/datasets/deathsregisteredinenglandandwalesseriesdrreferencetables

The model likelihood is evaluated using a count-based distribution (we try Poisson and

NegBinomial) compared to the overall deaths for a naive observation-year cohort.

Our General Model Architecture in this project is a modified Accelerated Failure Time (AFT) model.

See comprehensive explanations and deep technical demonstrations of various survival models and

explanations of censoring in our public reference project oreum_survival which includes

Accelerated Failure Time and Piecewise Regression Models.

Contents

Setup

Preamble

1. The Dataset and Problem-Space

2. The Modelling Work

3. Using the Model Outputs

Setup

Imports

from pathlib import Path

from oreum_core import curate, eda
from pyprojroot.here import here

Notebook config

%matplotlib inline
%config InlineBackend.figure_format = 'retina'

Data Connections and Helper Objects

ppqio_cleaned = curate.PandasParquetIO(here(Path('data', 'raw', 'cleaned')).resolve(st
ppqio_prepared = curate.PandasParquetIO(here(Path('data', 'prepared')).resolve(strict=
figio = eda.FigureIO(here(Path('plots')).resolve(strict=True))

https://github.com/oreum-industries/oreum_survival

Preamble

What is Survival Regression?

See comprehensive explanations and deep technical demonstrations in our public project

oreum_survival

Essentially, we seek to create principled models that provide explanatory inference and predictions

of the Survival Function and Expected Time-to-Event with quantified uncertainty to support

real-world decision-making.

f = figio.read(fn='../assets/img/001_gompertz_regression_alt_forecast_survival_functio
 title='Illustration of a probabilistic survival curve, taken from `oreum_surv
 figsize=(16, 6))

Illustrative Survival Function and Expected Time-to-Event from
this Project oreum_cs_ons

Taken from notebook oreum_cs_ons 311_GompertzNB_CohortD1.ipynb and shown here just

to give the reader a feel for the outputs and the problem-space. All estimates are made with

quantified uncertainty, which reveals (rather than hides) the inherent noise in real-world data and

processes.

f = figio.read(fn='311_gompertznb_cohortd1_v1_0_0_dfsx_forecast_shat.png', figsize=(12
f = figio.read(fn='311_gompertznb_cohortd1_v1_0_0_dfsx_forecast_et_male_true.png')

Ŝ(t) Êt

S(t) Et

https://github.com/oreum-industries/oreum_survival
https://github.com/oreum-industries/oreum_cs_ons

We gain massive advantage by using a Bayesian Framework

We specifically use Bayesian Inference rather than Frequentist Max-Likelihood methods for many

reasons, including:

Bayesian Inference Frequentist Max-Likelihood

General
formulation
Desirable Trait

Bayes' Rule

MLE

Principled
model structure
represents
hypothesis
about the data-
generating
process

Very strong
Can build bespoke arbitrary and
hierarchical structures of parameters to
map to the real-world data-generating
process.

Weak
Can only state structure under strict
limited assumptions of model statistical
validity.

Model
parameters and
their initial
values
represent

Very strong
Marginal prior distributions represent
real-world probability of parameter
values before any data is seen.

Very weak
No concept of priors. Lack of joint
probability distribution can lead to
discontinuities in parameter values.

→

↓
P(Ĥ∥D)


posterior

=

likelihood


P(D∥H) ⋅

prior


P(H)

P(D)

evidence

Ĥ
MLE

∝ arg max
H

P(D∥H)

https://betanalpha.github.io/assets/case_studies/modeling_and_inference.html

Bayesian Inference Frequentist Max-Likelihood

domain expert
knowledge

Robust
parameter
fitting process

Strong
Estimate full joint posterior probability
mass distribution for parameters - more
stable and representative of the
expectation for the parameter values.
Sampling can be a computationally
expensive process.

Weak
Estimate single-point max-aposterioi-
likelihood (density) of parameters - this
can be far outside the probability mass
and so is prone to overfitting and only
correct in the limit of infinite data. But
optimization method can be
computationally cheap.

Fitted
parameters
have
meaningful
summary
statistics for
inference

Very strong
Full marginal probability distributions can
be interpreted exactly as probabilities.

Weak
Point estimates only have meaningful
summary statistics under strict limited
assumptions of model statistical validity.

continues ...

... continued

Desirable Trait Bayesian Inference Frequentist Max-Likelihood

Robust model
evaluation process

Strong
Use entire dataset, evaluate via
Leave-One-Out Cross Validation (best
theoretically possible).

Weak
Cross-validation rarely seen in
practice, even if used, rarely better
than 5-fold CV. Simplistic method can
be computationally cheap.

Predictions made with
quantified variance

Very strong
Predictions made using full posterior
probability distributions, so
predictions have full empirical
probability distributions.

Weak
Predictions using point estimates can
be bootstrapped, but predictions only
have interpretation under strict limited
assumptions of model validity.

Handle imbalanced,
high cardinality &
hierarchical factor
features

Very strong
Can introduce partial-pooling to
automatically balance factors through
hierarchical priors.

Weak
Difficult to introduce partial-pooling
(aka mixed random effects) without
affecting strict limited assumptions of
model validity.

Handle skewed /
multimodal / extreme
value target variable

Very strong
Represent the model likelihood as any
arbitrary probability distribution,
including mixture (compound)
functions e.g. a zero-inflated Weibull.

Weak
Represent model likelihood with a
usually very limited set of
distributions. Very difficult to create
mixture compound functions.

Handle small datasets

Very strong
Bayesian concept assumes that there
is a probable range of values for each
parameter, and that we evidence our
prior on any amount of data (even
very small counts).

Very weak
Frequentist concept assumes that
there is a single true value for each
parameter and that we only discover
that value in the limit (of infinite
observations).

Desirable Trait Bayesian Inference Frequentist Max-Likelihood

Automatically impute
missing data

Very strong
Establish a prior for each datapoint,
evidence on the available data within
the context of the model, to
automatically impute missing values.

Very weak
No inherent method. Usually impute
as a pre-processing step with weak
non-modelled methods.

Practical Implementations of Bayesian Inference

We briefly referenced Bayes Rule above, which is a useful mnemonic when discussing Bayesian

Inference, but in practice the crux of putting these advanced statistical techniques into practice is

estimating the evidence i.e. the probability of observing the data that we use to evidence the

model

This joint probability of data and parameters requires an almost impossible-to-solve

integral over parameter-space . Rather than attempt to calculate that integral, we do something

that sounds far more difficult, but given modern computing capabilities is actually practical.

We use a Bleeding-edge MCMC Toolkit for Bayesian Inference: pymc &
arviz

We use Markov Chain Monte-Carlo (MCMC) sampling to take a series of ergodic, partly-reversible,

partly-randomised samples of model parameters , and at each step compute the ratio of log-

likelihoods between a starting position (current values) and proposed "sampled"

position in parameter space, so as to reduce that log-likelihood (whilst exploring the parameter

space).

This results in a posterior estimate :

P(D)

P(Ĥ|D)


posterior

=

...where:

P(D) ∼ ∫
Θ
P(D, θ) dθ

likelihood


P(D|H) ⋅

prior


P(H)

P(D)


evidence

P(D, θ) D θ

Θ

θ

logP(D|H) θp0

θp

P(θ̂ |D)

P(θ̂ |D) ∼

likelihood @ proposal


P(D|θp) ⋅

prior @ proposal


P(θp)

P(D|θp0)


likelihood @ current

⋅ P(θp0)


prior @ current

This is the heart of MCMC sampling: for detailled practical explanations see Betancourt, 2021 and

Tweicki, 2015

We use the bleeding-edge pymc and arviz Python packages to provide the full Bayesian toolkit

that we require, including advanced sampling, probabilistic programming, statistical inferences,

model evaluation and comparison, and more.

f = figio.read(fn='../assets/img/logos',figsize=(12, 2))

1. The Dataset and Problem-Space

1.1 Dataset

As noted above, we use a complicated, real-world dataset: the ONS England & Wales Deaths 2022

reference tables:

Death registrations by single year of age, (males | females),
England and Wales, registered 1963 to 2022

For illustration: table of the dataset, verbatim as supplied

df = ppqio_cleaned.read('deaths_2022')
eda.display_ht(df)

death_m_ct death_f_ct

yr age_at_death

1963-01-01 0 10401 7641

1 665 537

2 378 288

2022-01-01 103 90 493

104 52 268

105 39 385

https://betanalpha.github.io/assets/case_studies/sampling.html
https://twiecki.io/blog/2015/11/10/mcmc-sampling/
https://www.pymc.io/welcome.html
https://python.arviz.org/en/stable/
https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/datasets/deathsregisteredinenglandandwalesseriesdrreferencetables

'Shape: (6360, 2), Memsize 0.1 MB'

Post-cleaning (pre-preparation)

Explanation of the features for each of the 6360 raw observations:

yr: year of recorded death
age_at_death: age at death (rounded down to birthday passed)
death_m_ct: summed count of deaths for `sex=male`
death_f_ct: summed count of deaths for `sex=female`

For illustration: table of the dataset (post-preparation)

See oreum_cs_ons 100_Curate.ipynb for more detail

df = ppqio_prepared.read('deaths_2022')
eda.display_ht(df)

age_at_death cohort_b5 cohort_b10 death_ct

birth_yr death_yr male

1858-01-01 1963-01-01 False 105 1855<=b<1860 1850<=b<1860 16

True 105 1855<=b<1860 1850<=b<1860 1

1859-01-01 1963-01-01 False 104 1855<=b<1860 1850<=b<1860 14

2021-01-01 2022-01-01 True 1 2020<=b<2025 2020<=b<2030 75

2022-01-01 2022-01-01 False 0 2020<=b<2025 2020<=b<2030 1027

True 0 2020<=b<2025 2020<=b<2030 1384

'Shape: (12720, 4), Memsize 0.4 MB'

Post-preparation

Explanation of the features for each of the 12720 prepared observations:

Identifier features (from which we derive exogenous features for modelling use)

birth_year: Reverse-engineered birth year based on death_year
- age-at-death
death_year: death_year as supplied

Endogenous (target) features

death_ct: Summed count of deaths

Exogenous (predictor) features (some are derived / prepared)

https://github.com/oreum-industries/oreum_cs_ons

male: Sex of group is male (True/False) (this has been
melted from raw)
age_at_death: age_at_death as supplied
cohort_b5: Prepared aggregated birth-year cohort with bins of 5-
year span
cohort_b10: Prepared aggregated birth-year cohort with bins of 5-
year span

1.2. Aggregated Death Counts, Right-Truncation, and Event
Density

In the full case study oreum_cs_ons 300_ModelArchitecture we discuss in detail the

issues of this dataset and the impacts it has on the model architecture(s) available to us.

Aggregated death counts over time

The data is only supplied in aggregate form, so we don't have lifetime time-to-event

f = figio.read(fn='100_ons_deaths_2022.png', figsize=(16, 10))

Observe

These death_cohort s are not used in the model, they're just to condense the data little so

we can see general patterns

The most noticeable trend is a gentle raise and then decrease in the count of deaths in the

60<d<=80 group, matched by a negatively-correlating rise in count of deaths in the

80<d<=100 group: over time, people are dying later

We also see males are dying sooner than females

Note we observe deaths from 1963 onwards, due to ONS data availability

π

§1

t

https://github.com/oreum-industries/oreum_cs_ons

See oreum_cs_ons 100_Curate.ipynb for more detail

Right-Truncation

This dataset involves a very unusual right-truncation due to the ONS only publishing aggregated

death counts. i.e this is not an observational study of cohorts / individuals from a specified start-

time, instead we only learn about individuals when we record a death!

See reference project oreum_survival 000_Intro.ipynb for detail and helpful illustrations of

censoring

f = figio.read(fn='../assets/img/censoring', extension = '.jpeg',
 title='Recap illustration of censoring and trunction types. In particular, no
 figsize=(16, 8)) #, fontsize=16)

Empirical event density

We can still calculate a simple empirical event density as used in the AFT models:

f = figio.read(fn='310_empirical_pi_cohortd1', figsize=(12, 12))

§3

π

pi

https://github.com/oreum-industries/oreum_cs_ons
https://github.com/oreum-industries/oreum_survival

Observe:

Our empirical is quite well defined, and behaves as expected, with a mode well into old age

Lots of variance around the modal-age-of-death , which is understandable given we have a

lot of observations at this age (with births back to 1880s)

See oreum_cs_ons 310_GompertzPoisson_CohortD1.ipynb for more detail

1.3 Modelled Survival Function and Expected Time-to-
Event

We seek to estimate and thus the Expected Time-to-Event

As a side-effect of the mathematical relationships, we also get a Survival Function which can

be a more familiar representation for newcomers to understand.

The model produces these estimates with quantified uncertainty per individual, but we can

substitute a simplified dataset to effectively roll these up to look at the differences between groups

according to exogenous feature.

For example, forecasted Expected Time-to-Event and Survival
Function for male vs female:

f = figio.read(fn='311_gompertznb_cohortd1_v1_0_0_dfsx_forecast_shat.png', figsize=(12
f = figio.read(fn='311_gompertznb_cohortd1_v1_0_0_dfsx_forecast_et_male_true.png', fig
f = figio.read(fn='311_gompertznb_cohortd1_v1_0_0_dfsx_forecast_et_male_false.png', fi

π M

M

§1

Ŝ(t)

Êt

π Êt

Ŝ(t)

Êt

Ŝ(t)

https://github.com/oreum-industries/oreum_cs_ons

2. The Modelling Work

2.1 Architectures

We use an Accelerated Failure Time (AFT) model, specifically an uncensored Gompertz-

distribution on the Event Density , evidenced with a Count distribution on aggregated

deaths.

The AFT base model is explained in great detail with examples in our public reference project

oreum_survival 001_BayesianSurvival_AFT.ipynb

As noted above, the data here is right-truncated which necessitates a novel model architecture to

handle it. We describe this in great detail in oreum_cs_ons 300_ModelArchitecture.ipynb
and we will happily explain that interactively to interested folk.

π κ

https://github.com/oreum-industries/oreum_survival
https://github.com/oreum-industries/oreum_cs_ons

For illustration: math snippet and plate notation diagram of the novel
Gompertz-NegBinomial model

The key insight noted by Monica Alexander in her proposed model is that we can still evaluate the

actual observed death count compared to a proposed parametric event density function and

the total count of deaths for the relevant cohort (see for more discussion on). This

doesn't require us to have available for the likelihood.

See oreum_survival 202_AFT_GompertzAlt.ipynb for detail of the GompertzAlt AFT

architecture, and illustrations of the Gompertz Alt parameterization in use for , and the associated

, , and .

Here again substituting , and also omitting the machinery to handle right-censoring

(because we can't use it here), we see:, and using a Poisson count likelihood, we can continue the

AFT model spec as:

where:

 is the total count of events (death) per cohort

Very brief jumping-off point for discussion on Cohorts

To create we could simply sum each observation year

However, within an observation year , each value is sourced from people

with different birth years, and if we sum over them, we will smooth out cohort effects due to birth

year and their lived experiences in real time. i.e. real-world events will "flow through" the 's. This

seems like a mistake, and also a missed opportunity to include birth cohorts.

The practical impact is:

During model development we will experiment with increasing the fidelity of , from

We will incorporate these indicator variables as part of the regression submodel on

Cohort options

(A) Unpooled death year cohort

To create we could simply sum over each observation year death , which seems a little

backwards, but could yield varying by observed year of death, letting us make statements about

κc π(t)

Dc §1.4 Dc

di

π

λ Λ S

η = exp(−γM)

π(t) = λ(t) ⋅ S(t)

θc(t) = Dc ⋅ π(t)

κ̂c(t) ∼ Poisson(θc(t))

Dc

Dc Dy = ∑y κy(t)

y κy(t = 0, 1, 2, . . . ,n)

t

Dc y → b

M ∼ exp(βx)

Dc Dy

M

https://www.monicaalexander.com/posts/2018-02-15-gompertz/
https://github.com/oreum-industries/oreum_survival

years with high mortality (useful?)

Cohorts with a single 1-year resolution: models GompertzPoissonCohortD1 and

GompertzNBCohortD1

(B) Partial-pooled birth year cohort

This is our initially-preferred option for , to yield varying by birth cohort. This seems

closer to a real observational study where we have birth dates by individual

Cohorts with a 10-year resolution: models GompertzNBCohortB10 etc

Plate notation of simplest model: GompertzPoisson

f = figio.read(fn='../data/models/graph_gompertzpoisson_cohortd1_v101_dfx.png',
 title='GompertzPoisson_CohortD1', figsize=(12, 10))

Dd1 = ∑
d1

κd1(t)

∑
c
κc(t) M

Db10 = ∑
b10

κb10(t)

2.2 Bayesian Workflow

Throughout the case study we employ at reasonably complete Bayesian Workflow (see Gelman et

al, 2020 and Betancourt, 2020) using a cyclical process of model evaluation and improvement.

f = figio.read(fn='../assets/img/gelman_2020_fig1.png', title='Gelman et al., 2000 - F
figsize=(12, 10))

https://arxiv.org/abs/2011.01808
https://arxiv.org/abs/2011.01808
https://betanalpha.github.io/assets/case_studies/principled_bayesian_workflow.html

2.3 The Model Variants and Technical Evaluation

In this particular case study we ended up with 2 model variants based on the count distribution, and

further differences based on the death count cohort

GompertzPoisson_CohortD1

Establish the core model architecture (based on Accelerated-Failure-Time (AFT)) including:

Gompertz distribution on event density function with alternative parameterisation (modal

age-of-death,)

Poisson distribution on count

Linear submodel on parameter with unpoooled form: 1 + male_t_true
Use unpooled death year cohort , cohorts with a single 1-year resolution

π M

γ

κ

M

Dd1 = ∑d1 κd1(t)

GompertzNB_CohortD1

Modify GompertzPoisson_CohortD1 to:

Negative-Binomial distribution on count to decouple mean from variance and fit better

GompertzNB_CohortB10

Modify GompertzNB_CohortD1 to:

Use partial-pooled birth year cohort to yield varying by birth cohort ,

cohorts with a 10-year resolution

For illustration: plate notation diagram of the most complicated model in this case
study (GompertzNB_CohortB10)

See oreum_cs_ons 320_GompertzNB_CohortB10.ipynb for details and the full workflow

f = figio.read(fn='../data/models/graph_gompertznb_cohortb10_v0100_dfx.png', title='Go

κ

M Db10 = ∑b10 κb10(t)

https://github.com/oreum-industries/oreum_cs_ons

In-sample Model Evaluation

We compare model performance using advanced statistical reasoning.

At the end we can make a quantified evaluation and see that GompertzNB_CohortD1 performs the

best for this dataset. Note that GompertzPoisson_CohortD1 is substantially less performant

than any NB model, due to the limitations of the Poisson distribution on the count

See oreum_cs_ons 311_GompertzNB_CohortD1.ipynb for details of this in-sample LOO-PIT

evaluation method. Note we discover that the

κ

https://github.com/oreum-industries/oreum_cs_ons

f = figio.read(fn='320_2_6_compare_model_performance_all.png', figsize=(12, 3))
f = figio.read(fn='320_2_6_compare_model_performance_subset.png', figsize=(12, 3))

3. Using the Model Outputs

3.1 Inference via the linear coefficients

We use the alternative Gompertz parameterisation for event density

Regression considerations:

We should choose one parameter for the regression term , or carefully manage the

covariance between the two.

Because affects the mode, we will set , and open the potential to check our

posterior parameter values to published general literature on "average" lifespan in the UK

So we can view the relative coefficient values to make inferences about the correlation (not

causation) of features with changes in

3.1.1 Interpret effect of Simple Linear Coefficients

First let's view the posterior values of beta_* to infer how the numeric values affect

π(t) ∼ Gompertz(t | M, γ)

βT
x

M M = exp(βT
x)

M

α

f = figio.read(fn='311_2_7_krushke_priors.png', figsize=(12, 6))

Observe:

alpha : , not too narrow, as shown above () setting gives a

usefully broader peak

gamma : , extremely narrow still

beta_s : , a little higher and broader than specified, same as the

GompertzPoisson model

beta: intercept : positive, baseline , same as the

GompertzPossion model

beta: male_t_true : driving lower and lower (earlier death),

slightly more positive and wider than the GompertzPoisson model - suggesting this now

contains the variance we need to isolate

3.2 Prediction of Expected Time-to-Event for Individual
Observations

We also engineered our model to be able to make predictions on out-of-sample (aka previously

unseen) data of Expected Time-to-Event (which is formally in the model as

This is not a technical evaluation method, and the proper technical model evaluation is discussed

above , but here we can eyeball the predictions on a subset of data vs the true values, and get a

feel for what we can do with the predictive outputs.

Each prediction is of course a distribution over a range of values, quantifing the uncertainty in the

prediction. We can use the mean as the expected value, and the distribution as a measure of the

uncertainty.

We can test this distribution against the true data and comment on the model calibration

E ∼ 3.1 HDI94 §1.2.1 α = 3

E ∼ 0.11 HDI94

E ∼ 0.29 HDI94

E ∼ 4.4, 0 ∉ HDI94 M ≈ 81

E ∼ −0.039, 0 ∉ HDI94 M π

Êt

Êt π̂(t)

§2.3

Assuming a well-calibrated model, we can use the distribution as an exceedance curve wherein we

choose to use the predicted value at e.g. the 90th percentile, so that e.g. 90% of the time the true

value is below our predicted value. This is critical in risk evaluation etc.

f = figio.read(fn='311_gompertznb_cohortd1_v1_0_0_dfsx_forecast_et_male_false.png', fi
f = figio.read(fn='311_gompertznb_cohortd1_v1_0_0_dfsx_forecast_et_male_true.png', fig

Observe:

Here's the distribution of estimated Expected time-to-event for the forecast group for our

synthetic out-of-sample dataset for death_yr = 2023
For Female male = False : days

For Male male = True : days, sooner

The estimates have plausible scale (mean life expectancy in UK is reported to be around these

values)

The estimates have a plausible relationship (males die sooner)

These estimates are lower than the GompertzPoisson_CohortD1 model (which may or may

not be a good thing), but importantly the HDI94 s are wider, which is great to see, because it
means we're handling uncertainty in the data better and can make more-robust, better-qualified

predictions

4. Discussion of Cohort_B10

Êt

Êt ∼ 80 ∈ [80, 78]HDI94

Êt ∼ 77 ∈ [76, 77]HDI94 ≈ 4%

We started this case study with the intention of implementing partial-pooled birth year cohorts

, to yield varying by birth cohort. This seems closer to a real observational study where

we have birth dates by individual:

We experimented with this at a 10-year resolution in model GompertzNBCohortB10 , but found

poor results with our modified AFT model architecture, mainly due to the nature of the data itself.

The cohort_b10 groupwise empirical event density functions have
a poorly definied mode

f = figio.read(fn='320_empirical_pi_cohortb10.png', figsize=(12, 8))

Observe:

Cohorts 1880 to 1940 have a defined convex modal peak

Cohorts 1940 to 2000 do not have a convex modal peak, and could cause trouble - we could

try to underweight them in the component of the log-likelihood

Cohorts 2000 to 2030 are of course missing, so we will use auto-imputation in the

hierarchical structure

∑
c
κc(t) M

Db10 = ∑
b10

κb10(t)

π
M

M

M

The resulting Expected Time-to-Event for Individual Observations
were unusable

f = figio.read(fn='320_gompertznb_cohortb10_v0_10_0_dfsx_forecast_et.png', figsize=(12

Observe:

So, here's the distribution of estimated Expected time-to-event for our synthetic out-of-

sample dataset grouped by birth cohort cohortB10
It's not good! Inevitably displaying the same behaviour and relationships discussed above for

the plots of i.e

Early cohorts 1880 to 1920 still look somewhat plausible, albeit slightly lower than the

ONS' own statistics

Middle cohorts 1920 to 1980 are terrible - likely because convex isn't actually

observed, and the current top of the event density slope is mistaken for

Middle cohort 1980 to 1990 looks plausible, but there's no reason for the model to get

this right, so it's a chance accident

Later cohorts 1990 to 2030 are bad because they're underrepresented in the data and

largely auto-imputed from the hierarchical mean

We propose using a Gaussian Process to estimate the empirical Event
Density Function

If we were to continue to use this compromised data set from the ONS, the next logical step to

improve the general model architecture would be to use a Gaussian Process to directly estimate the

empirical Event Density Function , continue to evidence the count

... for future discussion!

Êt

Êt

Ŝ(t)

M

M

π

π κ

https://archive.ph/qAPY2
https://www.pymc.io/projects/examples/en/latest/gallery.html#gaussian-processes

Next Steps

Now the interested reader should dig into the full case study Notebooks in project oreum_cs_ons

There we demonstrate the full E2E workflow for models of increasing sophistication, including

several state-of-the-art methods unavailable to conventional max-likelihood / machine-learning

models.

100_Curate.ipynb
300_ModelArchitecture.ipynb
310_GompertzPoisson_CohortD1.ipynb
311_GompertzNB_CohortD1.ipynb
320_GompertzNB_CohortB10.ipynb

Oreum Industries © 2024

https://github.com/oreum-industries/oreum_cs_ons
https://oreum.io/

