
Oreum Industries Internal Project, 2024Q3

000_Overview.ipynb

Oreum Case Studies - Lung Cancer Survival Regression
oreum_cs_lung

Demonstrate Survival Regression Modelling using Bayesian inference and a Bayesian workflow,

specifically using the pymc & arviz ecosystem.

Here we report a brief overview of a full case study oreum_cs_lung in which we demonstrate an

E2E workflow for survival regression models of increasing sophistication.

This overview is for quick discussion purposes only, and ideally should accompany a deeper

technical walkthrough of the case study in a long-form style. There we evaluate the behaviour and

performance of the models throughout the workflows, including several state-of-the-art methods

unavailable to conventional max-likelihood / machine-learning models.

PDF version

Oreum Industries: Technical Resources

We use a complicated, real-world dataset: the NCCTG Lung Cancer Dataset lung from the

survival R package via statsmodels . This complicated dataset requires multiple advanced

modelling methods to handle and mitigate bad / messy data.

This case study also inspired us to create two original novel contributions to the pymc project:

1. A detailed worked example on handling ordinals in pymc-examples in GLM-ordinal-features

2. A detailed worked example on handling missing data in pymc-examples in GLM-missing-

values-in-covariates

See comprehensive explanations and deep technical demonstrations of various survival models in

our public project Oreum Survival including Accelerated Failure Time and Piecewise Regression

Models

Contents

https://oreum.io/
https://github.com/oreum-industries/oreum_cs_lung
file:///var/folders/yr/x3q_mhvx0l5djfrgtr_06qcw0000gn/T/000_Overview.pdf
https://github.com/oreum-industries
https://vincentarelbundock.github.io/Rdatasets/doc/survival/cancer.html
https://github.com/therneau/survival
https://www.pymc.io/welcome.html
https://www.pymc.io/projects/examples/en/latest/generalized_linear_models/GLM-ordinal-features.html
https://www.pymc.io/projects/examples/en/latest/generalized_linear_models/GLM-missing-values-in-covariates.html
https://www.pymc.io/projects/examples/en/latest/generalized_linear_models/GLM-missing-values-in-covariates.html
https://github.com/oreum-industries/oreum_survival

Setup

Preamble

1. The Dataset and Problem-Space

2. The Modelling Work

3. Using the Model Outputs

Setup

Imports

import sys
from pathlib import Path

from pyprojroot.here import here

prepend local project src files
module_path = here('src').resolve(strict=True)
if str(module_path) not in sys.path:
 sys.path.insert(0, str(module_path))

from oreum_core import curate, eda

Notebook config

%matplotlib inline
%config InlineBackend.figure_format = 'retina'

Data Connections and Helper Objects

ppqio_cleaned = curate.PandasParquetIO(here(Path('data', 'raw', 'cleaned')).resolve(st
figio = eda.FigureIO(here(Path('plots')).resolve(strict=True))

Preamble

What is Survival Regression?

See comprehensive explanations and deep technical demonstrations in our public project

Oreum Survival

Essentially, we seek to create principled models that provide explanatory inference and predictions

of the Survival Function and Expected Time-to-Event with quantified uncertainty to support

real-world decision-making.

f = figio.read(fn='../assets/img/001_gompertz_regression_alt_forecast_survival_functio
 title='Illustration of a probabilistic survival curve, taken from `oreum_surv
 figsize=(16, 6))

Illustrative Survival Function and Expected Time-to-Event

Taken from notebook oreum_cs_lung 300_ModelA_E2E.ipynb and shown here just to give the

reader a feel for the outputs and the problem-space. All estimates are made with quantified

uncertainty, which reveals (rather than hides) the inherent noise in real-world data and processes.

f = figio.read(fn='300_lung_mdla_v054_dfsx2_forecast_sf_p0.png', figsize=(12, 10))
f = figio.read(fn='300_lung_mdla_v054_dfsx2_forecast_et_p1.png')

Ŝ(t) Êt

S(t) Et

https://github.com/oreum-industries/oreum_survival
https://github.com/oreum-industries/oreum_cs_lung

We gain massive advantage by using a Bayesian Framework

We specifically use Bayesian Inference rather than Frequentist Max-Likelihood methods for many

reasons, including:

Bayesian Inference Frequentist Max-Likelihood

General
formulation
Desirable Trait

Bayes' Rule

MLE

Principled
model structure
represents
hypothesis
about the data-
generating
process

Very strong
Can build bespoke arbitrary and
hierarchical structures of parameters to
map to the real-world data-generating
process.

Weak
Can only state structure under strict
limited assumptions of model statistical
validity.

Model
parameters and

Very strong
Marginal prior distributions represent

Very weak
No concept of priors. Lack of joint

→

↓
P(Ĥ∥D)


posterior

=

likelihood


P(D∥H) ⋅

prior


P(H)

P(D)

evidence

Ĥ
MLE

∝ arg max
H

P(D∥H)

https://betanalpha.github.io/assets/case_studies/modeling_and_inference.html

Bayesian Inference Frequentist Max-Likelihood

their initial
values
represent
domain expert
knowledge

real-world probability of parameter
values before any data is seen.

probability distribution can lead to
discontinuities in parameter values.

Robust
parameter
fitting process

Strong
Estimate full joint posterior probability
mass distribution for parameters - more
stable and representative of the
expectation for the parameter values.
Sampling can be a computationally
expensive process.

Weak
Estimate single-point max-aposterioi-
likelihood (density) of parameters - this
can be far outside the probability mass
and so is prone to overfitting and only
correct in the limit of infinite data. But
optimization method can be
computationally cheap.

Fitted
parameters
have
meaningful
summary
statistics for
inference

Very strong
Full marginal probability distributions can
be interpreted exactly as probabilities.

Weak
Point estimates only have meaningful
summary statistics under strict limited
assumptions of model statistical validity.

continues ...

... continued

Desirable Trait Bayesian Inference Frequentist Max-Likelihood

Robust model
evaluation process

Strong
Use entire dataset, evaluate via
Leave-One-Out Cross Validation (best
theoretically possible).

Weak
Cross-validation rarely seen in
practice, even if used, rarely better
than 5-fold CV. Simplistic method can
be computationally cheap.

Predictions made with
quantified variance

Very strong
Predictions made using full posterior
probability distributions, so
predictions have full empirical
probability distributions.

Weak
Predictions using point estimates can
be bootstrapped, but predictions only
have interpretation under strict limited
assumptions of model validity.

Handle imbalanced,
high cardinality &
hierarchical factor
features

Very strong
Can introduce partial-pooling to
automatically balance factors through
hierarchical priors.

Weak
Difficult to introduce partial-pooling
(aka mixed random effects) without
affecting strict limited assumptions of
model validity.

Handle skewed /
multimodal / extreme
value target variable

Very strong
Represent the model likelihood as any
arbitrary probability distribution,
including mixture (compound)
functions e.g. a zero-inflated Weibull.

Weak
Represent model likelihood with a
usually very limited set of
distributions. Very difficult to create
mixture compound functions.

Handle small datasets Very strong
Bayesian concept assumes that there
is a probable range of values for each
parameter, and that we evidence our

Very weak
Frequentist concept assumes that
there is a single true value for each
parameter and that we only discover

Desirable Trait Bayesian Inference Frequentist Max-Likelihood

prior on any amount of data (even
very small counts).

that value in the limit (of infinite
observations).

Automatically impute
missing data

Very strong
Establish a prior for each datapoint,
evidence on the available data within
the context of the model, to
automatically impute missing values.

Very weak
No inherent method. Usually impute
as a pre-processing step with weak
non-modelled methods.

Practical Implementations of Bayesian Inference

We briefly referenced Bayes Rule above, which is a useful mnemonic when discussing Bayesian

Inference, but in practice the crux of putting these advanced statistical techniques into practice is

estimating the evidence i.e. the probability of observing the data that we use to evidence the

model

This joint probability of data and parameters requires an almost impossible-to-solve

integral over parameter-space . Rather than attempt to calculate that integral, we do something

that sounds far more difficult, but given modern computing capabilities is actually practical.

We use a Bleeding-edge MCMC Toolkit for Bayesian Inference: pymc &
arviz

We use Markov Chain Monte-Carlo (MCMC) sampling to take a series of ergodic, partly-reversible,

partly-randomised samples of model parameters , and at each step compute the ratio of log-

likelihoods between a starting position (current values) and proposed "sampled"

position in parameter space, so as to reduce that log-likelihood (whilst exploring the parameter

space).

This results in a posterior estimate :

P(D)

P(Ĥ|D)


posterior

=

...where:

P(D) ∼ ∫
Θ
P(D, θ) dθ

likelihood


P(D|H) ⋅

prior


P(H)

P(D)


evidence

P(D, θ) D θ

Θ

θ

logP(D|H) θp0

θp

P(θ̂ |D)

This is the heart of MCMC sampling: for detailed practical explanations see Betancourt, 2021 and

Tweicki, 2015

We use the bleeding-edge pymc and arviz Python packages to provide the full Bayesian toolkit

that we require, including advanced sampling, probabilistic programming, statistical inferences,

model evaluation and comparison, and more.

f = figio.read(fn='../assets/img/logos',figsize=(12, 2))

1. The Dataset and Problem-Space

1.1 Dataset

As noted above, We use a complicated, real-world dataset that requires multiple advanced

modelling methods to handle and mitigate bad / messy data.

We use the NCCTG Lung Cancer Dataset lung from the survival R package via

statsmodels .

For illustration: table of the dataset (post-cleaning)

See oreum_cs_lung 100_CurateExtractClean.ipynb for details

df = ppqio_cleaned.read('lung')
eda.display_ht(df)

P(θ̂ |D) ∼

likelihood @ proposal


P(D|θp) ⋅

prior @ proposal


P(θp)

P(D|θp0)


likelihood @ current

⋅ P(θp0)


prior @ current

https://betanalpha.github.io/assets/case_studies/sampling.html
https://twiecki.io/blog/2015/11/10/mcmc-sampling/
https://www.pymc.io/welcome.html
https://python.arviz.org/en/stable/
https://vincentarelbundock.github.io/Rdatasets/doc/survival/cancer.html
https://github.com/therneau/survival
https://github.com/oreum-industries/oreum_cs_lung

duration death age_at_start calories_consumed_amt ecog_physician_cat inst_id karno

pid

p000 306 True 74 1175.0 c1 i3

p001 455 True 68 1225.0 c0 i3

p002 1010 False 56 NaN c0 i3

p225 105 False 75 1025.0 c2 i32

p226 174 False 66 1075.0 c1 i6

p227 177 False 58 1060.0 c1 i22

'Shape: (228, 10), Memsize 0.0 MB'

Explanation of the features for each of the 228 observations, post-cleaning (which includes cleaning

dirty values forcing correct datatypes, renaming to be more clear, etc)

Endogenous (target) features captured at the end of the study period

duration: Time-to-event observed during study period (days) (can be
censored)
death: Death observed during study period

Exogenous (predictor) features captured at the start of the study period

age_at_start: Age in years
calories_consumed_count: Calories consumed at meals
ecog_physician_cat: ECOG score as rated by the physician. c0
to c4
inst_id: Institution identifier code
karno_patient_amt: Karnofsky score as rated by patient {0,
..., 100}
karno_physician_amt: Karnofsky score as rated by physician {0,
..., 100}
male: Sex of patient is male (True/False)
weight_loss_prior_amt: Weight loss in last six months (pounds)

The medical details behind this data are explained and linked further in the dataset page

1.2. Time to Event and Event Density

The 228 individuals have an observed "lifetime" aka time-to-event during the study, measured in

days.

For each individual this starts when they enter the study (not necessarily all on the same day), and

ends either at death (death=True) or when the study ends.

t π

https://vincentarelbundock.github.io/Rdatasets/doc/survival/cancer.html

Lifetimes (Censored Time-to-Event)

f = figio.read(fn='100_individual_observed_t.png', figsize=(14, 10))

Empirical event density

f = figio.read(fn='100_empirical_event_density.png', figsize=(12, 12))

π

1.3 Modelled Survival Function and Expected Time-to-
Event

We seek to estimate and thus the Expected Time-to-Event

As a side-effect of the mathematical relationships, we also get a Survival Function which can

be a more familiar representation for newcomers to understand.

The model produces these estimates with quantified uncertainty per individual, but we can

substitute a simplified dataset to effectively roll these up to look at the differences between groups

according to exogenous feature.

For example, forecasted Expected Time-to-Event and Survival
Function for male vs female:

f = figio.read(fn='300_lung_mdla_v054_dfsx0_forecast_et_p0.png', figsize=(12, 10))
f = figio.read(fn='300_lung_mdla_v054_dfsx0_forecast_sf_p0.png', figsize=(12, 10))

Ŝ(t)

Êt

π Êt

Ŝ(t)

Êt

Ŝ(t)

2. The Modelling Work

2.1 Architectures

We use an Accelerated Failure Time (AFT) model, specifically a censored Weibull-distribution

on the Event Density .

The AFT base model is explained in great detail with examples in our public reference project

oreum_survival 001_BayesianSurvival_AFT.ipynb

As noted above, the purpose of this case study is to demonstrate an E2E workflow for models of

increasing sophistication. We evaluate the behaviour and performance of the models throughout the

workflows, including several state-of-the-art methods unavailable to conventional max-likelihood /

machine learning models.

For illustration: math and plate notation diagram of the most basic
model (Model A0)

See oreum_cs_lung 300_ModelA_E2E.ipynb for details and the full workflow. See

oreum_cs_lung src/model/lung.py for the code

Snippet of the general math for the censored Weibull likelihood and the linear-submodel for

regression onto features:

π

https://github.com/oreum-industries/oreum_survival
https://github.com/oreum-industries/oreum_cs_lung
https://github.com/oreum-industries/oreum_cs_lung

Plate notation of simplest model ModelA0

f = figio.read(fn='../data/models/graph_lung_mdla_v054_dfx0.png', title='ModelA0', fig

σβ ∼ Gamma(α = 1,β = 2)

β ∼ Normal(μ = 0,σ = σβ)

α ∼ exp(βT
x)

γ ∼ Gamma(α = 1,β = 200)

π̂(t) ∼ αγ(γti)
α−1, di ⋅ exp(−(γt)α)

∼ Weibull(t | α, γ)

2.2 Bayesian Workflow

Throughout the case study we employ at reasonably complete Bayesian Workflow (see Gelman et

al, 2020 and Betancourt, 2020) using a cyclical process of model evaluation and improvement.

f = figio.read(fn='../assets/img/gelman_2020_fig1.png', title='Gelman et al., 2000 - F
figsize=(12, 10))

https://arxiv.org/abs/2011.01808
https://arxiv.org/abs/2011.01808
https://betanalpha.github.io/assets/case_studies/principled_bayesian_workflow.html

2.3 The Model Variants and Technical Evaluation

Generally, we want to use as many observations and features from the dataset as possible, although

obviously we have to mitigate overfitting (we use L2 regularization) and resource constraints.

In general we aim to create models with increasing sophistication and ability to handle the nature of

the dataset. In particular in this dataset we encounter numerics, booleans, categoricals, ordinals and

missing values!

In this particular case study we ended up with 5 different model variants:

Model A

Establish the core model architecture for Accelerated-Failure-Time (AFT) including:

Weibull likelihood on event density

Event censoring via CustomDist

Linear submodel on param

In particular create 3 sub-variants using the (complete) numeric and boolean values available:

male_t_true
age_at_start

Linear component: 1 + male_t_true + age_at_start + age_at_start^2

Model B

Extend Model A to include (missing-value / incomplete) numeric values

We use a sophisticated technique of hierarchical auto-imputation to fill-in missing values of

calories_consumed_amt , weight_loss_prior_amt within the model itself (not a pre-

processing step!)

Linear component: 1 + male_t_true + age_at_start + age_at_start^2 +
calories_consumed_amt + weight_loss_prior_amt

Model C

Extend Model B to include (complete) categorical values

We use a sophisticated technique with a hierarchical prior (aka mixed random effects) to

include the categorical feature inst_id
Interestingly, we see the model performance decrease, likely because the cardinality is too high

given the small dataset, and in the real-world this would encourage us to seek more information

from the data source to learn latent groupings within the inst_id and apply further

hierarchies into the model

Linear component: 0 + inst_id + male_t_true + age_at_start + age_at_start^2
+ calories_consumed_amt + weight_loss_prior_amt

Model D

Extend Model C to include (complete) ordinal values

We use a sophisticated technique with Dirichlet allocator to include ordinal categorical

features ecog_physician_cat , karno_physician_cat , karno_patient_cat
These are present due to misuse of a subjective value that's been mapped to a metric scale,

also see pymc-examples GLM-ordinal-features.ipynb for detailed discussion and

worked examples

α

https://github.com/pymc-devs/pymc-examples/examples/generalized_linear_models/GLM-ordinal-features.ipynb

Linear component: 0 + inst_id + ecog_physician_cat + karno_physician_cat +
karno_patient_cat + 'male + age_at_start + np.power(age_at_start,2) +
calories_consumed_amt + weight_loss_prior_amt + death

Model E

Simplify Model C to remove inst_id , to make use of the innovations in Model D and

remove the performance drop of Model C
We compare the models Model A0 vs Model E on an in-sample dataset to eyeball the

results

For illustration: plate notation diagram of the most complicated model in this case
study (Model D)

See oreum_cs_lung 303_ModelD_E2E.ipynb for details and the full workflow, and note we

actually pull this back to a simpler Model E which achieves the best results

f = figio.read(fn='../data/models/graph_lung_mdld_v010_dfx0.png', title='ModelD', figs

In-sample Model Evaluation

We create a variety of models according to the nature of the data and compare their performance

using advanced statistical reasoning.

At the end we can make a quantified evaluation and see that Model E performs the best for this

dataset.

https://github.com/oreum-industries/oreum_cs_lung

See oreum_cs_lung 304_ModelE_E2E.ipynb for details of this in-sample LOO-PIT evaluation

method

f = figio.read(fn='304_1_6_compare_model_performance.png', figsize=(12, 10))

3. Using the Model Outputs

3.1 Inference via the linear coefficients

We used a 2-parameter form of the Weibull with a linear regression onto .

When:

, hazard decreases over time e.g. early mortality

, hazard is constant and the model reduces to the Exponential model

, hazard increases over time e.g. later mortality

So we can view the relative coefficient values to make inferences about the correlation (not

causation) of features with changes in

3.1.1 Interpret effect of Simple Linear Coefficients

First let's view the posterior values of beta_* to infer how the numeric values affect

f = figio.read(fn='304_1_7_krushke_betas.png', figsize=(12, 10))

α ∼ exp(βT
x)

α < 1

α = 1 λ ∼ γ

α > 1

α

α

https://github.com/oreum-industries/oreum_cs_lung

Observe:

beta: intercept : , mild effect i.e. overall increasing hazard

fn over duration (later mortality)

beta: male_t_true : , appreciable effect, earlier

mortality for males

beta: age_at_start : , minimal effect, slightly earlier mortality

for higher ages

beta: age_at_start_2_power : , mild effect, earlier mortality for

higher ages

beta_mv: calories_consumed_amt : , stronger effect,

later mortality with higher calories

beta_mv: weight_loss_prior_amt : minimal effect, slightly later

mortality with higher calories

beta_ecog_physician_cat : minimal effect, slightly earlier

mortality with higher ecog physician score

beta_karno_physician_cat : , appreciable effect, later mortality

with higher karno physician score

beta_karno_patient_cat : , appreciable effect, later mortality with

higher karno patient score

We won't attempt to interpret the coefficients much further because we're not physicians and this

isn't our data / medical study.

However, we can note that beta: male_t_true , beta: age_at_start_2_power , beta_mv:
calories_consumed_amt , beta_karno_physician_cat , beta_karno_patient_cat all

have appreciable correlating effects with mortality in this model - and would be good candidate

features for further exploration, model finessing, and further medical study

Let's view those beta coefficients in a forestplot to gain a better understanding of the relative

effects we just noted

E ∼ 0.053, 0 ∈ HDI94 α > 1

λ

E ∼ −0.15, 0 ∈ HDI94, , 0 ∉ HDI80

E ∼ −0.053, 0 ∈ HDI94

E ∼ −0.12, 0 ∈ HDI94

E ∼ 0.21, 0 ∈ HDI94, 0 ∉ HDI80

E ∼ 0.015, 0 ∈ HDI94

E ∼ −0.012, 0 ∈ HDI94

E ∼ 0.23, 0 ∈ HDI94

E ∼ 0.17, 0 ∈ HDI94

f = figio.read(fn='304_1_7_forestplot_betas.png', figsize=(12, 8))

Observe:

This is the same info we saw above, but let's highlight the biggest movers:

beta: male_t_true : , appreciable effect, earlier

mortality for males

beta: age_at_start_2_power : , mild effect, earlier mortality for

higher ages

beta_karno_physician_cat : , appreciable effect, later mortality

with higher karno physician score

beta_karno_patient_cat : , appreciable effect, later mortality with

higher karno patient score

3.1.2 Interpret effects of ordinal values

We can also view the posterior values of nu_* to infer how the ordinal categorical values in

beta_ecog_physician_cat , beta_karno_physician_cat , beta_karno_patient_cat
affect

f = figio.read(fn='304_1_7_forestplot_nus.png', figsize=(12, 5))

E ∼ −0.15, 0 ∈ HDI94, , 0 ∉ HDI80

E ∼ −0.12, 0 ∈ HDI94

E ∼ 0.23, 0 ∈ HDI94

E ∼ 0.17, 0 ∈ HDI94

α

Observe:

nu_ecog_physician_cat : as c0 -> c4 there's barely any impact, except for widening

uncertainty. As we see in 100_Curate_ExtractClean.ipynb , the upper values c3 &

c4 are almost not observed, so this huge uncertainty is expected, however, there's no

appreciable difference within c0 , c1 , c2 suggesting it's not a worthwhile metric for our

model usage

nu_karno_physician_cat : as c0 -> c100 there's a fairly linear increase on \alpha
(later mortality). The near-linear response suggests this ordinal metric is being used quite

reliably

nu_karno_patient_cat : as c0 -> c100 there's a fairly linear increase on \alpha (later

mortality). The near-linear response suggests this ordinal metric is being used quite reliably, but

the effect is weaker than nu_karno_physician_cat which makes sense if we assume that

the physician is a better judge of health

For more detail and discussion on ordinals, see our original novel contribution to pymc-
examples in GLM-ordinal-features

3.1.3 Interpret auto-imputed missing values

We can also view the posterior values of x_mv_mu * to infer how the model has auto-imputed

hierarchical expected values for the missing data in features calories_consumed_amt and

weight_loss_prior_amt .

For brevity we wont look into the auto-imputed posterior values x_mv for individual observations,

and refer the reader to 304_ModelE_E2E.ipynb for full detail

§3.2

https://www.pymc.io/projects/docs/en/stable/learn/generalized_linear_models/GLM-ordinal-features.html

f = figio.read(fn='304_1_7_krushke_x_mv.png', figsize=(12, 2.5))

Observe:

calories_consumed_amt :

weight_loss_prior_amt :

In both cases with zscored the data prior to modelling, so these hierarchical values effectively

0 are exactly what we would expect to see if the missing values are Missing at Random (MAR).

This supports our choice to include these features without fear that we are introducing systemic

issues in the data

For more deatil and discussion on handling missing data, see our original novel contribution to

pymc-examples in GLM-missing-values-in-covariates

3.2 Prediction of Expected Time-to-Event for individual
observations

We also engineered our model to be able to make predictions on out-of-sample (aka previously

unseen) data of Expected Time-to-Event (which is formally in the model as

This is not a technical evaluation method, and the proper technical model evaluation is discussed

above , but here we can eyeball the predictions on a subset of data vs the true values, and get a

feel for what we can do with the predictive outputs.

Each prediction is of course a distribution over a range of values, quantifying the uncertainty in the

prediction. We can use the mean as the expected value, and the distribution as a measure of the

uncertainty. We can test this distribution against the true data and comment on the model

calibration.

Assuming a well-calibrated model, we can use the distribution as an exceedance curve wherein we

choose to use the predicted value at e.g. the 90th percentile, so that e.g. 90% of the time the true

value is below our predicted value. This is critical in risk evaluation etc.

f = figio.read(fn='304_2_1_predicted_that.png', figsize=(12, 6))

E ∼ 0.0034, 0 ∈ HDI94

E ∼ −0.0004, 0 ∈ HDI94

Êt

Êt π̂(t)

§2.3

https://www.pymc.io/projects/docs/en/stable/learn/generalized_linear_models/GLM-missing-values-in-covariates.html

Observe:

This is a random subset of the full dataset, which itself is very small and noisy, so we shouldn't

expect perfection

Nonetheless, we see useful predictions where the has always captured the true value,

and in most cases the much smaller has captured the correct value

The ability of our principled model to make useful predictions on out-of-sample data is

incredibly powerful

Next Steps

Now the interested reader should dig into the full case study Notebooks in project

oreum_cs_lung

There we demonstrate the full E2E workflow for models of increasing sophistication, including

several state-of-the-art methods unavailable to conventional max-likelihood / machine-learning

models.

100_Curate_ExtractClean.ipynb
200_EDA_Survival.ipynb
300_ModelA_E2E.ipynb
301_ModelB_E2E.ipynb
302_ModelC_E2E.ipynb
303_ModelD_E2E.ipynb
304_ModelE_E2E.ipynb

HDI94

HDI50

https://github.com/oreum-industries/oreum_cs_lung

Oreum Industries © 2024

https://oreum.io/

