
Oreum Industries Reference Project, 2024Q3

000_Intro.ipynb

Oreum Reference - Copula Regression oreum_copula

Demonstrate Bayesian Copula Regression Modelling using Bayesian inference and a Bayesian

workflow, specifically using the pymc & arviz ecosystem.

This Intro can also be used for verbal presentation and discussion purposes, ideally followed by a

deeper technical walkthrough of the project in a long-form style. Because this project is a reference,

it contains huge amounts of detail which is not worthwhile to summarise too much.

The interested reader should refer to the project notebooks where we evaluate the behaviour and

performance of the models throughout the workflows, including several state-of-the-art methods

unavailable to conventional max-likelihood / machine-learning models.

PDF version

Oreum Industries: Technical Resources

What is Copula Regression?

We seek to create principled models that provide explanatory inference and predictions of Marginal

distributions that are jointly coupled by a Latent Copula , using quantified uncertainty to

support real-world decision-making.

M C

https://oreum.io/
file:///var/folders/yr/x3q_mhvx0l5djfrgtr_06qcw0000gn/T/000_Intro.pdf
https://github.com/oreum-industries

Motivation:

A classic use-case for this model architecture (in the 2-dimensional setting) is insurance claims

aka incurred loss

We decompose the dollar value of claims into two marginal distributions: the frequency , and

severity of expected loss cost , because these measures are intuitive and can behave

differently, with a (highly important) degree of covariance

If we use a naive model that doesn't account for the covariance between frequency and

severity , then the model predictions for expected loss cost can be hugely wrong!

Quick Aside on decomposition of claims frequency and severity

We can create different decompositions for different purposes, and according to the data available.

A useful one shown here is the ratio of losses per unit TIV, to generalise to policies of different TIV

where:

Each policy (the dataset of all policies) can have it's own (policy-level) frequency (

) and severity () of claim (and thus policy-level)

Σ

frqi = , sevi =

Eloss i = frqi ∗ sevi =

claim_cti
TIVi

incurred_totali
claim_cti

incurred_totali
TIVi

i ∈ n

frqi ≥ 0 sevi ≥ 0 Eloss i ≥ 0

Note and tend to be zero-augmented distributions (where no loss is experienced): this

is a very important aspect to include in real-world model architectures

 is the count of claims incurred for policy

 is the Total Insured Value (TIV) for policy

 is the total incurred losses for policy

Plug:

Oreum Industries is releasing a forecasting product Vulcan for DUA pricing & portfolio

management that takes 3 simple tables (policy, premium_transactions, claims_transactions)

and outputs probabilistic forecasts of Expected Loss Cost at policy-level

At the heart of the solution is a holistic, principled, open-box Bayesian copula model (for

covarying claims frq-sev) that runs quickly via API to integrate within modern data processing

pipelines and dashboards

We incorporate underwriter expertise; create hierarchical generalised linear regression on

business-relevant parameters with high cardinality; allow for zero-claims inflation; auto-impute

missing data; and more generally allow for small noisy datasets typical of DUA business.

Back to this presentation's focus on the copula function

Demonstration:

In this notebook:

We create a small synthetic dataset of observations of two marginals which have

covariance , and also (because we can) a version of the marginals without

covariance

We compare the resulting values of the joint product vs and

see that impact of ignoring the covariance is substantial.

frq sev

claim_cti ≥ 0 i

TIVi > 0 i

incurred_totali ≥ 0 i

M0,M1

Σ M0x,M1x

y = M0 ∗ M1 y = M0x ∗ M1x

In the rest of the reference guide:

We create a series of principled copula models using advanced architectures and Bayesian

inference to fit to the data and estimate the covariance on

The first model is naive and ignores the covariance, the final model is very sophisticated

and estimates the covariance

We demonstrate a substantial 33 percentage-point improvement in model accuracy

when using a copula-based model

This correct estimation would likely make the difference between profitable pricing /

accurate reserving, or greatly loss-making business over a portfolio.

General project approach

The emphasis in this project is to build a variety of models of increasing sophistication and

demonstrate their usage. We strike a balance between building up concepts & methods vs practical

application & worked examples in a pymc -based Bayesian workflow.

We don't focus on specific analysis of the dataset, nor try to infer too much. The dataset is simply a

good substrate on which to learn and demonstrate the variety of model architectures used herein.

We evaluate the behaviour and performance of the models throughout the workflows, including

several state-of-the-art methods unavailable to conventional max-likelihood / machine-learning

models

This series of Notebooks covers

000_Intro.ipynb : Orientiation and fundamental concepts

100_ModelA0.ipynb : Core (naive) architecture: Create priors, marginal likelihoods, but no

copula

101_ModelA1.ipynb : Partial architecture (extends ModelA0): Include Gaussian copula (w/

Jacobian adjustment), and several technical innovations to let pymc work with the

transformations

102_ModelA2.ipynb : Full architecture (extends ModelA1): Include Jacobian Adjustment on

transformed observations

In this Notebook

We dive straight into Orientation and Fundamental General Abstractions with a simple real-world

observational censored dataset, and then go on to demonstrate the theory and usage of an

increasing sophistication of models.

Contents

Setup

Preamble: Why Bayes?

M0,M1

1. Orientation: Copula Functions and Their Behaviour

2. Brief Technical Summary: The Copula Model designed in this Project

Setup

Imports

import sys
from pathlib import Path

import numpy as np
import pandas as pd
from oreum_core import eda
from pyprojroot.here import here

prepend local project src files
module_path = here('src').resolve(strict=True)
if str(module_path) not in sys.path:
 sys.path.insert(0, str(module_path))

from engine import logger
from synthetic.create_copula import CopulaBuilder

autoreload local modules to allow local dev
%load_ext autoreload
%autoreload 2
import warnings # noqa
warnings.simplefilter(action='ignore', category=FutureWarning) # noqa
warnings.simplefilter(action='ignore', category=UserWarning) # noqa
import seaborn as sns

Notebook config

%matplotlib inline
%config InlineBackend.figure_format = 'retina'

log = logger.get_logger('000_Intro', notebook=True)
_ = logger.get_logger('oreum_core', notebook=True)

Local Functions and Global Vars

RSD = 42
RNG = np.random.default_rng(seed=RSD)

Data Connections

figio = eda.FigureIO(here(Path('plots')).resolve(strict=True))

Preamble: Why Bayes?

We gain massive advantage by using a Bayesian Framework

We specifically use Bayesian Inference rather than Frequentist Max-Likelihood methods for many

reasons, including:

Bayesian Inference Frequentist Max-Likelihood

General
formulation
Desirable Trait

Bayes' Rule

MLE

Principled
model structure
represents
hypothesis
about the data-
generating
process

Very strong
Can build bespoke arbitrary and
hierarchical structures of parameters to
map to the real-world data-generating
process.

Weak
Can only state structure under strict
limited assumptions of model statistical
validity.

Model
parameters and
their initial
values
represent
domain expert
knowledge

Very strong
Marginal prior distributions represent
real-world probability of parameter
values before any data is seen.

Very weak
No concept of priors. Lack of joint
probability distribution can lead to
discontinuities in parameter values.

Robust
parameter
fitting process

Strong
Estimate full joint posterior probability
mass distribution for parameters - more
stable and representative of the
expectation for the parameter values.
Sampling can be a computationally
expensive process.

Weak
Estimate single-point max-aposterioi-
likelihood (density) of parameters - this
can be far outside the probability mass
and so is prone to overfitting and only
correct in the limit of infinite data. But
optimization method can be
computationally cheap.

Fitted
parameters
have
meaningful
summary

Very strong
Full marginal probability distributions can
be interpreted exactly as probabilities.

Weak
Point estimates only have meaningful
summary statistics under strict limited
assumptions of model statistical validity.

→

↓
P(Ĥ∥D)

posterior

=

likelihood

P(D∥H) ⋅

prior

P(H)

P(D)

evidence

Ĥ
MLE

∝ arg max
H

P(D∥H)

https://betanalpha.github.io/assets/case_studies/modeling_and_inference.html

Bayesian Inference Frequentist Max-Likelihood

statistics for
inference

continues ...

... continued

Desirable Trait Bayesian Inference Frequentist Max-Likelihood

Robust model
evaluation process

Strong
Use entire dataset, evaluate via
Leave-One-Out Cross Validation (best
theoretically possible).

Weak
Cross-validation rarely seen in
practice, even if used, rarely better
than 5-fold CV. Simplistic method can
be computationally cheap.

Predictions made with
quantified variance

Very strong
Predictions made using full posterior
probability distributions, so
predictions have full empirical
probability distributions.

Weak
Predictions using point estimates can
be bootstrapped, but predictions only
have interpretation under strict limited
assumptions of model validity.

Handle imbalanced,
high cardinality &
hierarchical factor
features

Very strong
Can introduce partial-pooling to
automatically balance factors through
hierarchical priors.

Weak
Difficult to introduce partial-pooling
(aka mixed random effects) without
affecting strict limited assumptions of
model validity.

Handle skewed /
multimodal / extreme
value target variable

Very strong
Represent the model likelihood as any
arbitrary probability distribution,
including mixture (compound)
functions e.g. a zero-inflated Weibull.

Weak
Represent model likelihood with a
usually very limited set of
distributions. Very difficult to create
mixture compound functions.

Handle small datasets

Very strong
Bayesian concept assumes that there
is a probable range of values for each
parameter, and that we evidence our
prior on any amount of data (even
very small counts).

Very weak
Frequentist concept assumes that
there is a single true value for each
parameter and that we only discover
that value in the limit (of infinite
observations).

Automatically impute
missing data

Very strong
Establish a prior for each datapoint,
evidence on the available data within
the context of the model, to
automatically impute missing values.

Very weak
No inherent method. Usually impute
as a pre-processing step with weak
non-modelled methods.

Practical Implementations of Bayesian Inference

We briefly referenced Bayes Rule above, which is a useful mnemonic when discussing Bayesian

Inference, but in practice the crux of putting these advanced statistical techniques into practice is

estimating the evidence i.e. the probability of observing the data that we use to evidence the

model

P(D)

This joint probability of data and parameters requires an almost impossible-to-solve

integral over parameter-space . Rather than attempt to calculate that integral, we do something

that sounds far more difficult, but given modern computing capabilities is actually practical.

We use a Bleeding-edge MCMC Toolkit for Bayesian Inference: pymc &
arviz

We use Markov Chain Monte-Carlo (MCMC) sampling to take a series of ergodic, partly-reversible,

partly-randomised samples of model parameters , and at each step compute the ratio of log-

likelihoods between a starting position (current values) and proposed "sampled"

position in parameter space, so as to reduce that log-likelihood (whilst exploring the parameter

space).

This results in a posterior estimate :

This is the heart of MCMC sampling: for detailed practical explanations see Betancourt, 2021,

Carroll, 2019, and Tweicki, 2015

We use the bleeding-edge pymc and arviz Python packages to provide the full Bayesian toolkit

that we require, including advanced sampling, probabilistic programming, statistical inferences,

model evaluation and comparison, and more.

P(Ĥ|D)

posterior

=

...where:

P(D) ∼ ∫
Θ
P(D, θ) dθ

likelihood

P(D|H) ⋅

prior

P(H)

P(D)

evidence

P(D, θ) D θ

Θ

θ

logP(D|H) θp0

θp

P(θ̂ |D)

P(θ̂ |D) ∼

likelihood @ proposal

P(D|θp) ⋅

prior @ proposal

P(θp)

P(D|θp0)

likelihood @ current

⋅ P(θp0)

prior @ current

https://betanalpha.github.io/assets/case_studies/sampling.html
https://colindcarroll.com/2019/04/11/hamiltonian-monte-carlo-from-scratch/
https://twiecki.io/blog/2015/11/10/mcmc-sampling/
https://www.pymc.io/welcome.html
https://python.arviz.org/en/stable/

1. Orientation: Copula Functions and Their
Behaviour

1.1 Create Synthetic Copula Dataset

We can learn a lot by creating a synthetic copula dataset using a "forward-pass":

1. Start with random data sampled from the PDF of a Latent Copula function with 2-

dimensions

2. Transform each dimension of the coupled data through the CDF of the copula function to

yield data distributed according to a Latent Uniform distribution

3. Transform each dimension of now-uniform data through the Inverse CDF of our chosen marginal

distribution to yield data distributed according to "observed" Marginal distribution(s)

In the following slides we'll plot the distributions and describe the transformations. Also see project

class synthetic.create_copula.CopulaBuilder for details

Note we create observations split into 2 sets: for train (in-sample) and for holdout
(out-of-sample)

cb = CopulaBuilder()
df_all = cb.create(nobs=60)
cb.ref_vals

{'c_r': -0.7,
'c_cov': array([[1. , -0.7],
 [-0.7, 1.]]),
'm0_kind': 'lognorm',
'm1_kind': 'lognorm',
'm0_params': {'mu': 0.2, 'sigma': 0.5},
'm1_params': {'mu': 2.0, 'sigma': 1.0}}

perm = RNG.permutation(df_all.index.values)
df_train = df_all.loc[perm[:50]]
df_holdout = df_all.loc[perm[50:]]

eda.describe(df_train, nobs=0, get_counts=False)

C □C

(C0,C1) ∼ □C

ΦC

U

(U0,U1) = ΦC(C0,C1)

Φ−1
M

M

(M0,M1) = Φ−1
M

(U0,U1)

60 50 10

dtype count_unique top freq sum mean std min 25% 50% 75% max

ft

index:
oid

object 50 i028 1 NaN NaN NaN i000 NaN NaN NaN i059

c0 float64 NaN NaN NaN -1.63 -0.03 0.79 -2.13 -0.64 -0.06 0.68 1.42

c1 float64 NaN NaN NaN -1.85 -0.04 0.86 -2.12 -0.5 0.06 0.56 1.82

u0 float64 NaN NaN NaN 24.61 0.49 0.26 0.02 0.26 0.48 0.75 0.92

u1 float64 NaN NaN NaN 24.84 0.5 0.27 0.02 0.31 0.52 0.71 0.97

m0 float64 NaN NaN NaN 64.71 1.29 0.5 0.42 0.89 1.19 1.72 2.49

m1 float64 NaN NaN NaN 493.00 9.86 8.25 0.89 4.47 7.84 12.93 45.47

c0x float64 NaN NaN NaN -5.38 -0.11 0.91 -2.62 -0.58 -0.0 0.34 1.89

c1x float64 NaN NaN NaN -5.52 -0.11 1.0 -1.99 -0.62 -0.21 0.54 2.46

u0x float64 NaN NaN NaN 23.59 0.47 0.27 0.0 0.28 0.5 0.63 0.97

u1x float64 NaN NaN NaN 23.36 0.47 0.29 0.02 0.27 0.42 0.7 0.99

m0x float64 NaN NaN NaN 63.91 1.28 0.59 0.33 0.91 1.22 1.45 3.14

m1x float64 NaN NaN NaN 546.02 10.92 14.19 1.01 3.96 6.02 12.62 86.77

'Shape: (50, 12), Memsize 0.0 MB'

1.2 Visualise the Synthetic Observations

1.2.1 View the Latent Copula (an MvN)

In this forward-pass to create the synthetic data, we firstly create observations of of a 2-

dimensional Multivariate Normal distribution with covariance

This forms our Latent Copula (a Gaussian), and this is where we could get creative and use any

number of alternative copula functions from the literature (e.g. Clayton, Frank, Gumbel, etc) or even

create our own: the copula marginals dont have to be the same distribution

f = eda.plot_joint_numeric(data=df_train, ft0='c0', ft1='c1', kind='kde+scatter', heig
 txtadd=f'Latent Copula = $MvN(0, \\Sigma={cb.ref_vals["c_cov"].flatten().t

50

Σ

(C0,C1) ∼ □C

∼ MultivariateNormal(μ, Σ, shape = 2)

Observe:

Note the standard Normal(0,1) scaling on the marginals

Note the empirically-observed correlation as defined in c_cov

1.2.2 View the Uniform-Transformed Marginals

In this forward-pass to create the synthetic data, next we pass each dimension of the Latent Copula

 through the CDF of it's own function to get a Latent Uniform distribution

Regardless of the latent copula, this intermediate step will result in 2 Uniform marginals (which still

have covariance)

f = eda.plot_joint_numeric(data=df_train, ft0='u0', ft1='u1', kind='kde+scatter', colo
 height=5, txtadd='Latent Uniform Marginals with Copula Covariance')

ρ ≈ −0.7

C ΦC U

(U0,U1) = ΦC(C0,C1)

= NormalCDF(C0,C1)

Observe:

Now the marginals are uniform, but the correlation remains

1.2.3 View the Observed Marginals m0 , m1 (post transformation)

In this forward-pass to create the synthetic data, next we pass each dimension of the Latent Uniform

 through the Inverse CDF of the marginal distribution to get the Marginal distribution(s) in

The marginal distribution(s) can be anything. In practice we tend to use right-tailed distributions

in the Exponential family, here a LogNormal. We can, of course, use different distributions on each

marginal - there's no constraint to be the same - but we use the same ones here. This is the data

that we would observe in the real-world dataset:

f = eda.plot_joint_numeric(data=df_train, ft0='m0', ft1='m1', kind='kde+scatter', colo
 height=5, txtadd='Observed Marginals with Copula Covariance')
fqn = figio.write(f, fn='000_jointplot_corr')

U Φ−1
M

M

(M0,M1) = Φ−1
M

(U0,U1)

= LogNormalInvCDF(U0,U1)

M

Observe

Marginals now have unique long-tail distributions, and the correlation remains

1.2.4 View the Marginals if they were synthesized without a Copula

In project class synthetic.create_copula.CopulaBuilder we also synthesize uncorrelated

observations using the same transformation and final marginals , so that we can visually compare

the different effects.

Uncorrelated marginals individually look the same as . We have to look at the joint

distribution to see the difference

f = eda.plot_joint_numeric(data=df_train, ft0='m0x', ft1='m1x', kind='kde+scatter', co
 height=5, txtadd='Observed Marginals without Copula Covariance')

Mx

M

(C
χ

0 ,C
χ

1) ∼ Normal(μ,σ, shape = 2)

(U
χ

0 ,U
χ

1) = NormalCDF(C
χ

0 ,C
χ

1)

(M
χ

0 ,M
χ

1) = LogNormalInvCDF(U
χ

0 ,U
χ

1)

M χ M

Observe

Spherical joint distribution, no correlation between our marginals here

1.2.5 Overplot Marginals Correlated () vs Uncorrelated () to
Highlight the Differences

dfp = pd.concat((df_train[['m0', 'm1']], df_train[['m0x', 'm1x']]\
 .rename(columns={'m0x':'m0', 'm1x': 'm1'})),
 axis=0, ignore_index=True)
dfp['corr_kind'] = np.repeat(['y_corr', 'y_uncorr'], repeats=len(df_train))
f = eda.plot_joint_numeric(
 data=dfp, ft0='m0', ft1='m1', hue='corr_kind', kind='kde', kdefill=False, colori=2
 height=5, txtadd='Observed marginals with / without Copula Covariance')
fqn = figio.write(f, fn='000_jointplot_corr_vs_uncorr')

M M χ

Observe

The marginals look almost identical, but the joint distribution is very different

We might say "so what?" because we can always jointplot our marginals and see that there is

correlation

The huge impact is that these lead to a very different joint product ...

1.3 Compare the Impact on Joint Product

If we build a model that fits to marginals , but does not account for the correlation, will

behave as if we fit it on uncorrelated marginals . The predicted differences in and won't

look too different on the marginals, but the joint products vs can

become very different:

dfp['joint'] = dfp[['m0', 'm1']].product(axis=1)
pal = sns.color_palette(['C2', 'C3'])
f = eda.plot_smrystat_grp(dfp, grp='corr_kind', val='joint', palette=pal, plot_outlier
fqn = figio.write(f, fn='000_y_corr_vs_uncorr')

Observe:

M

y

y

H M H

M χ M M χ

y = M0 ⋅ M1 yχ = M
χ

0 ⋅ M
χ

1

This customer diagnostic combination plot shows:

Pointplot (left): The bootstrapped sums vs

Boxplot (center): The individual values vs

Countplot (right): The counts of observations

The (bootstrapped) sum of y_uncorr () is almost always much higher than for

y_corr ()

This shows that if our model were to estimate marginals correctly but ignore the covariance,

it would erroneously mis-estimate the joint distribution total value . Here that mistake is to

overestimate.

View the overestimate

Let's view the bootstapped overestimate delta = y_uncorr = y_corr

idx = dfp['corr_kind'] == 'y_corr'
dfpp = pd.DataFrame({'delta': dfp.loc[~idx, 'joint'].values - dfp.loc[idx, 'joint'].va
g = eda.plot_smrystat(dfpp, val='delta', txtadd='joint product value', plot_outliers=F
fqn = figio.write(f, fn='000_y_delta')

Observe:

If we imagine this to be a portfolio of policies, and the value of interest is an Expected Loss Cost

, and the units are dollars, then:

If we were to use a model that ignores covariance, we might get a portfolio estimate of

 dollars higher than if we were to use a better model that handles covariance with a

copula function

This overestimate is a substantial and would likely make the difference between

profitable pricing / accurate reserving, or greatly loss-making business over the portfolio.

2. Brief Technical Summary: The Copula Model
designed in this Project
Again, this Intro is for verbal presentation and discussion purposes only - ideally followed by a

deeper technical walkthrough of the project in a long-form style. Because this project is a reference,

∑
i
yi ∑

i
y
χ

i

yi y
χ
i

i

μ ≈ 700

μ ≈ 500

H

y

δ = ∑i y
χ
i −∑i yi

50

y = Eloss

Eloss ≈ 200

≈ +40%700
500

https://sedar.co/posts/bootstrap-primer/

it contains huge amounts of detail which is not worthwhile to summarise too much.

The interested reader should refer to the project notebooks where state the architecture in full, we

evaluate the behaviour and performance of the models in a consistent Bayesian workflow, including

several state-of-the-art methods unavailable to conventional max-likelihood / machine-learning

models.

Here we can can highlight a very tangible impact of our results of using a Copula model (ModelA2)

vs a Naive model (ModelA0)

2.1 Brief Orientation on Model Workflow and Architecture

General Approach

We create a synthetic dataset with 60 observations: these have exogenous values on 2

marginals ,

We create 3 models of increasing sophistication to estimate , and thus the joint product

The simplest naive model (ModelA0) does not include a copula function, and the most

sophisticated model ModelA2 does

...

We define a training set of 50 random observations, fit the models, and view the forecasted

predictions on a holdout set of 10 observations

We fully evaluate the models in the project notebooks using a variety of sophisticated

techniques including In-sample Prior & Posterior Retrodictive ECDF plots, LOO-PIT calculations

& plots, and more convential coverage, RSME and R2 calculations. This forecast on the holdout

is not a formal model evaluation

However for discussion and elucidation we can plot the bootstrapped sum of the actual values

 and compare to the posterior predictions of the two models

General Architecture

In contrast to the "forward-pass" that we use to synthesize the data, for the model we must of

course start with the only data that we have (the observed marginals) and work in a "backwards-

pass" toward the copula.

1. Define 2 marginal distributions (here for convenience we use the same family

(Lognormals) for each, so we will represent as simply). Each marginal is parameterised by a

linear submodel to allow linear regression onto selected features

M0 M1

M̂0 M̂1

ŷ = M̂0 ⋅ M̂1

∑ yholdout ∑ ŷholdout

M

(M0, M1)

M

βTxij j

M = LogNormal(μ = βTxij,σ)

https://sedar.co/posts/bootstrap-primer/

2. Transform each dimension of the observed marginal data through the CDF of the marginal

distribution(s) to yield data distributed according to a Latent Uniform distribution

3. Transform each dimension of now-uniform data through the Inverse CDF of the copula

distribution(s) (here for convenience we use the same family (Normal aka a Gaussian

Copula) for each, so we will represent as simply)

4. Evidence the transformed data against the copula function

5. For stability and correctness, we also evidence at the marginals and minimise a Jacobian

adjustment on the double-transformed data.

6. Importantly, and unlike other model specifications in the Bayesian literature, we preserve the

full posterior distribution(s) all the way through the model specification, without ever having to

collapse to point estimates

Math Specification

Marginals both , evidence likelihood:

Transform observed to Latent via their assumed CDFs:

Transform Latent via a Normal InverseCDF

Create a latent covariance structure

Evaluate likelihood of transformed marginals using MVNormal:

Plate Notation

M

U

(U0,U1) = ΦM(M0,M1)

U

(C0, C1)

C

(C0,C1) = Φ−1
C

(U0,U1)

C logL C

Mk, k ∈ 0, 1 LogNormal

β
j0
Mk

∼ Normal(μ,σ)

σMk
∼ InverseGamma(α,β)

L M̂k ∼ LogNormal(βT
Mk

x
jk

i ,σMk
)

Mk Uniform Uk

Uk = mkΦ(Mk)

Uniform Normal Ck

Ck = MvNormal(μ = 0,σ = 1)Φ−1(Uk)

Σ

L ∼ LKJCholesky(2), R ∼ LKJCorr(2)

σ ∼ InverseGamma(α,β)

Σ ∼ LLT = diag(σ) ∗ R ∗ diag(σ)

Ĉ

L Ĉ ∼ MvNormal(μ = 0, Σ, observed = Ck)

Refer to Notebook 102_ModelA2.ipynb and project class models.copula.ModelA2 for full

details.

This advanced, fully Bayesian architecture allows for:

Regression via linear submodels on the marginals of mhat
Efficient covariance via an structure

A natural transformation from M -> U -> C including Jacobian Adjustment

2.2 Compare Estimated ModelA0 vs ModelA2

ModelA0

This model sets a baseline for performance: it uses the same marginals but does not have a copula.

This is "the best that one could do" with a naive non-copula architecture, and the performance /

results are analogous to that we discussed in

figio.read(fn='100_2_8_4_ppc_holdout_y_boxplot_mdla0_v1_3_0_dfx_holdout.png', figsize=

βT
x

LKJCholeskyCovariance

ŷ

M χ §1

Observe:

Now we can clearly see the impact: although the in-sample model fit was acceptable, the

combined value is way off, because this model ignores copula correlation between the

marginals

The mean of is , is very different (and sits outside of) the bootstrapped actual data

is

Comparing means we have a overestimate!

We do see that the PPC distribution envelops the bootstrapped actual data, which is promising,

and means the model wouldn't necessarily be wrong to use, but there is clearly room to

improve!

ModelA2

This is our most advanced model with a copula architecture: the performance / results are analogous

to that we discussed in

figio.read(fn='102_2_8_4_ppc_holdout_y_boxplot_mdla2_v1_2_0_dfx_holdout.png', figsize=

Observe:

Now we can clearly see the impact: the Jacobian adjustment has allowed mdla2 to estimate a

much more precise and accurate value for

The mean of is , and maps nicely with the bootstrapped actual data is

Comparing means, we get overestimate

This is substantially better than mdla0 , and also meaningfully improves on mdla1

ModelA2 vs ModelA0

In the above, we see a reduction in the mean overestimate of from down to : a 33

percentage point drop and relative improvement!

This is a huge difference on this very small and simple dataset, and found only by correctly

modelling the covariance using a copula and a sophisticated model architecture.

y

¯̄¯
ŷ μ ≈ 13.4

¯̄¯
ŷ

μ ≈ 9.6

≈ +40%13.4
9.6

M §1

ŷ
¯̄¯
ŷ μ ≈ 10.4

¯̄¯
ŷ μ ≈ 9.6

≈ +7%10.4
9.6

y 40% 7%

83%

2.3 Supercharged Predictions with Quantified Uncertainty:
Exceedance Curve

Now we pull back to demonstrate the power and utility of using a Bayesian model in the first place:

because the predicted output values individually & jointly have quantified uncertainty aka empirical

probability. We can sum these and create an Exceedance Curve (1 - ECDF)

figio.read(fn='102_2_8_4_ppc_holdout_y_exceedance_mdla2_v1_2_0_dfx_holdout.png', figsi

We can read this curve horizontally to determine the value at a particular probability :

, (aka @ 1-in-2), and much closer to the actual data

, (aka @ 1-in-20)

Or we can read this curve vertically to determine the empirical probability of achieving a particular

value :

: i.e. if we're worried about , we might be less concerned because

the probability is approx 1-in-20

: i.e. if we're worried about , we might be sanguine because the

probability is approx 1-in-100

This appears substantially tighter and more robust than mdla0 and mdla1

Notes

y P

P@0.50
¯̄¯
ŷ ≥ 10.0

¯̄¯
ŷ ≈ 10.0

P@0.05
¯̄¯
ŷ ≥ 14.8

¯̄¯
ŷ ≈ 14.8

P

y

P(
¯̄¯
ŷ > 15) ≈ 0.05

¯̄¯
ŷ > 15

P(
¯̄¯
ŷ > 17) ≈ 0.01

¯̄¯
ŷ > 17

%load_ext watermark
%watermark -a "jonathan.sedar@oreum.io" -udtmv -iv

Author: jonathan.sedar@oreum.io

Last updated: 2025-05-05 15:13:01

Python implementation: CPython
Python version : 3.12.10
IPython version : 9.2.0

Compiler : Clang 18.1.8
OS : Darwin
Release : 24.4.0
Machine : arm64
Processor : arm
CPU cores : 8
Architecture: 64bit

oreum_core: 0.10.8
pandas : 2.2.3
pyprojroot: 0.3.0
sys : 3.12.10 | packaged by conda-forge | (main, Apr 10 2025, 22:19:24) [Clang
18.1.8]
numpy : 1.26.4
seaborn : 0.13.2

Next Steps

Now the interested reader should dig into the Notebooks in project reference oreum_copula

There we demonstrate the full E2E workflow for models of increasing sophistication, including

several state-of-the-art methods unavailable to conventional max-likelihood / machine-learning

models.

100_ModelA0.ipynb : Core (naive) architecture: Create priors, marginal likelihoods, but no

copula

101_ModelA1.ipynb : Partial architecture (extends ModelA0): Include Gaussian copula (w/

Jacobian adjustment), and several technical innovations to let pymc work with the

transformations

102_ModelA2.ipynb : Full architecture (extends ModelA1): Include Jacobian Adjustment on

transformed observations

Oreum Industries © 2024

https://github.com/oreum-industries/oreum_copula
https://oreum.io/

